Hardness of Liar's Domination on Unit Disk Graphs

نویسندگان

  • Ramesh K. Jallu
  • Gautam K. Das
چکیده

A unit disk graph is the intersection graph of a set of unit diameter disks in the plane. In this paper we consider liar’s domination problem on unit disk graphs, a variant of dominating set problem. We call this problem as Euclidean liar’s domination problem. In the Euclidean liar’s domination problem, a set P = {p1, p2, . . . , pn} of n points (disk centers) are given in the Euclidean plane. For p ∈ P, N [p] is a subset of P such that for any q ∈ N [p], the Euclidean distance between p and q is less than or equal to 1, i.e., the corresponding unit diameter disks intersect. The objective of the Euclidean liar’s domination problem is to find a subset D (⊆ P) of minimum size having the following properties : (i) |N [pi] ∩ D| ≥ 2 for 1 ≤ i ≤ n, and (ii) |(N [pi] ∪ N [pj ]) ∩ D| ≥ 3 for i 6= j, 1 ≤ i, j ≤ n. This article aims to prove the Euclidean liar’s domination problem is NP-complete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear kernels for k-tuple and liar's domination in bounded genus graphs

A set D ⊆ V is called a k-tuple dominating set of a graph G = (V,E) if |NG[v] ∩D| ≥ k for all v ∈ V , where NG[v] denotes the closed neighborhood of v. A set D ⊆ V is called a liar’s dominating set of a graph G = (V,E) if (i) |NG[v] ∩D| ≥ 2 for all v ∈ V , and (ii) for every pair of distinct vertices u, v ∈ V , |(NG[u] ∪NG[v]) ∩D| ≥ 3. Given a graph G, the decision versions of k-Tuple Dominatio...

متن کامل

MAX-CUT and MAX-BISECTION are NP-hard on unit disk graphs

We prove that the max-cut and max-bisection problems are NP-hard on unit disk graphs. We also show that λ-precision graphs are planar for λ > 1/ √ 2 and give a dichotomy theorem for max-cut computational complexity on λ-precision unit disk graphs.

متن کامل

Approximation hardness of optimization problems in intersection graphs of d-dimensional boxes

The Maximum Independent Set problem in d-box graphs, i.e., in the intersection graphs of axis-parallel rectangles in Rd, is a challenge open problem. For any fixed d ≥ 2 the problem is NP-hard and no approximation algorithm with ratio o(logd−1 n) is known. In some restricted cases, e.g., for d-boxes with bounded aspect ratio, a PTAS exists [17]. In this paper we prove APX-hardness (and hence no...

متن کامل

On sum coloring and sum multi-coloring for restricted families of graphs

We consider the sum coloring (chromatic sum) and sum multi-coloring problems for restricted families of graphs. In particular, we consider the graph classes of proper intersection graphs of axis-parallel rectangles, proper interval graphs, and unit disk graphs. All the above mentioned graph classes belong to a more general graph class of (k+1)clawfree graphs (respectively, for k = 4, 2, 5). We ...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.07808  شماره 

صفحات  -

تاریخ انتشار 2016